
UNIT-II

TIME RESPONSE ANALYSIS

- Q.1 List out the time domain specifications and derive the expressions for Rise time, Peak 12M time and Peak overshoot.
- Q.2 Find all the time domain specifications for a unity feedback control system whose open 12M loop transfer function is given by $G(S) = \frac{25}{S(S+5)}$.
- Q.3 A closed loop servo is represented by the differential equation: $\frac{d^2c}{dt^2} + 8\frac{dc}{dt} = 64e$. Where ^{12M} 'c' is the displacement of the output shaft, 'r' is the displacement of the input shaft and e = r - c. Determine undamped natural frequency, damping ratio and percentage maximum overshoot for unit step input.
- **Q.4** a. Measurements conducted on a servo mechanism, show the system response to be c(t) = 6M $1+0.2e^{-60t}-1.2e^{-10t}$ When subject to a unit step input. Obtain an expression for closed loop transfer function, determine the undamped natural frequency, damping ratio?
 - b. For servo mechanisms with open loop transfer function given below what type of input 6M signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{10}{S^2(S+1)(S+2)}.$$

- Q.5 A unity feedback control system has an open loop transfer function, $G(s) = \frac{10}{s(s+2)}$. Find 12M the rise time, percentage overshoot, peak time and settling time for a step input of 12 units.
- Q.6 What is meant steady state error? Derive the static error components for Type 0, Type 1 12M &Type 2 systems?
- **Q.7** A positional control system with velocity feedback shown in figure. What is the response 12M c(t) to the unit step input. Given that damping ratio=0.5.Also calculate rise time, peak time, maximum overshoot and settling time.

Q.8 a. A For servo mechanisms with open loop transfer function given below what type of input 6M signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{20(S+2)}{S(S+1)(S+3)}$$

QUESTION BANK 2019

b. Consider a unity feedback system with a closed loop transfer function $\frac{C(S)}{R(S)} = \frac{KS+b}{(S^2+aS+b)}$. 6M Determine open loop transfer function G(s). Show that steady state error with unit ramp input is given by $\frac{(a-K)}{b}$

Q.9 For a unity feedback control system the open loop transfer function $G(S) = \frac{10(S+2)}{S^2(S+1)}$. 12M (i) Find the position, velocity and acceleration error constants.

(ii) The steady state error when the input is $\mathbf{R}(\mathbf{S}) = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$.

- **Q.10** a. What is the characteristic equation? List the significance of characteristic equation. 4M
 - b. The system has $G(s) = \frac{K}{S(1+ST)}$ with unity feedback where K & T are constant. Determine 8M the factor by which gain 'K' should be multiplied to reduce the overshot from 75% to 25%?

		QUESTION BANK 2019	
		UNIT –III	
		STABILITY ANALYSIS IN CONTROL SYSTEMS	
Q.1		With the help of Routh's stability criterion find the stability of the following systems	
		represented by the characteristic equations:	
		(a) $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$.	3M
		(b) $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0.$	6M
		(c) $s^5 + s^4 + 2 s^3 + 2 s^2 + 3s + 5 = 0$.	3M
Q.2	a.	The open loop transfer function of a unity feedback system is given by	8M
		$G(s) = \frac{K(S+1)}{(S^3 + aS^2 + 2S + 1)}$. Determine the value of 'K' and 'a' so that the system oscillates at a frequency of 2 rad/sec.	
	b.	Explain the effect of adding poles and zeros to characteristic equation on stability of the	4M
		root loci.	
Q.3		The open loop Transfer function of a unity feedback control system is given by	12M
		$G(s)H(s) = \frac{K}{(s+2)(s+4)(s^2+6s+25)}$ Determine the value of K which will cause sustained	
		oscillations n the closed loop system and what is the corresponding oscillation	
		Frequency.	
Q.4		Using Routh's criteria determine the stability of following system.	
		(a) It's open loop transfer function has poles at $s = 0$, $s = -1$, $s = -3$ and zeros at $s = -5$,	6M
		Gain k of forward path is "10"	
		(b) It is a type-1 system, with an error constant of 10 sec ⁻¹ and poles at $s = -3 \& s = -6$.	6M
Q.5		Sketch the root locus of the system whose open loop transfer function is	12M
		G (s) H (s) = $\frac{K}{s(s+2)(s+4)}$. Find the value of 'K' so that the damping ratio of closed loop	
		system is 0.5.	
Q.6		Sketch the root locus of the system whose open loop transfer function is	12M
		G(s) H(s) = $\frac{K}{S(S+4)(S^2+4S+20)}$	
Q.7		Sketch the root locus of the system whose open loop transfer function is	12M
		G(s) H(s) = $\frac{K(S+1.5)}{S(S+1)(S+5).}$	
Q.8		Sketch the root locus of the system whose open loop transfer function is	12M
		G(s) H(s) = $\frac{K(S^2+6S+25)}{S(S+1)(S+2)}$	

QUESTION BANK 2019

12M

Q.9 Sketch the root locus of the system whose open loop transfer function is

$$G(s)H(s) = \frac{K(s+2)}{s(s-2)(s^2+5s+16)}$$

Q.10 The characteristic equation of a feedback control system is $s^4+3s^3+12s^2+$ (**K-16**) s+K=0 12M Sketch the root locus plot for 0 < K < infinity. Determine the range of gain for which the system is stable.

QUESTION BANK 2019

UNIT-IV

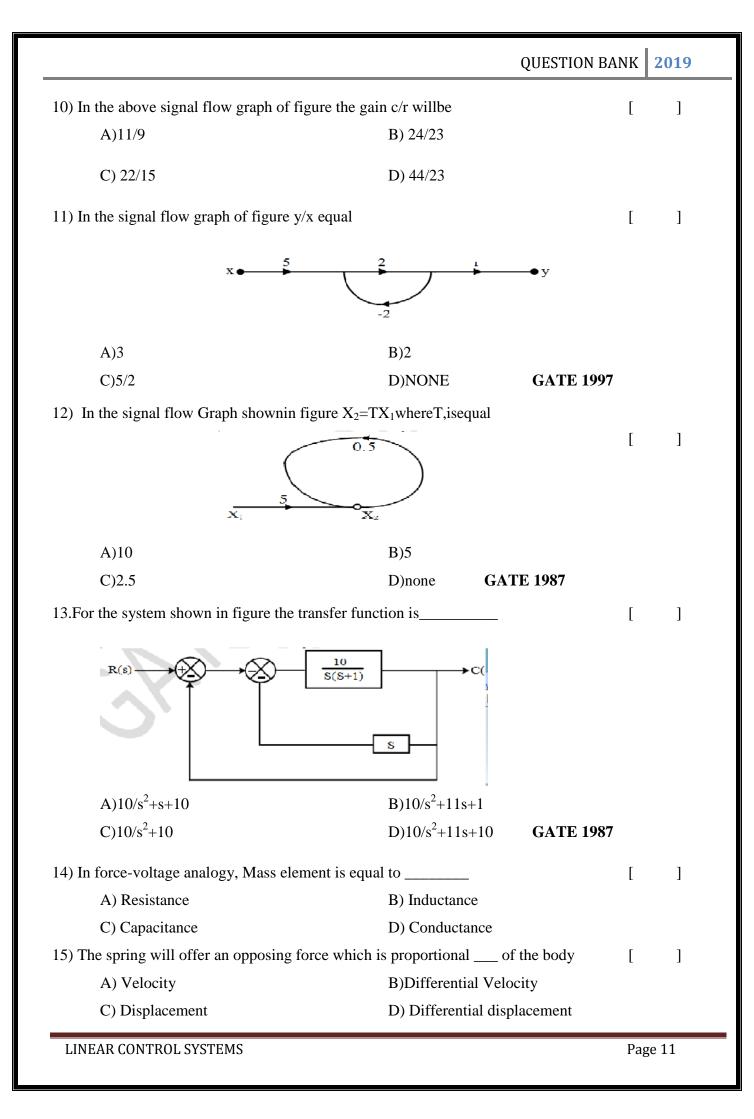
FREQUENCY RESPONSE ANALYSIS

		FREQUENCY RESPONSE ANALYSIS	
Q.1		Sketch the Bode plot for the following transfer function $G(s)H(s) = \frac{Ke^{-0.1s}}{S(s+1)(1+0.1s)}$	12M
		a) What is the value of K for the \mathbf{w}_{gc} to be 0.5 rad/sec. For this value of K, what is the	
		PM?	
		b) What is the value of K for the $\mathbf{w_{gc}}$ to be 5 rad/sec. For this value of K, what is the PM?	
Q.2	a.	Band width is directly proportional to ω_n Justify.	4M
	b.	Draw the Bode plot for the system having the following transfer function	8M
		$\mathbf{G(s)} = \frac{15 \ (S+5)}{S(S^2 + 16S + 100)}$	
Q.3	a.	Define and derive the expression for resonant frequency.	6M
	b.	Draw the magnitude bode plot for the system having the following transfer function:	6M
		$G(s) H(s) = \frac{2000 (S+1)}{S(S+10) (S+40)}$	
Q.4		Derive the expressions for resonant peak and resonant frequency and hence establish the	12M
		correlation between time response and frequency response.	
Q.5		Draw the Bode plot for the following Transfer Function $\mathbf{G}(\mathbf{s}) \mathbf{H}(\mathbf{s}) = \frac{36(0.1S+1)}{S^2(0.2S+1)(0.02S+1)}$	12M
		From the bode plot determine (a) Gain Margin (b) Phase Margin (c) Comment on the	
		stability	
Q.6	a.	Given $\xi = 0.7$ and $\omega_n = 10$ rad/sec. Find resonant peak, resonant frequency and	6M
		bandwidth.	
	b.	Sketch the polar plot for the open loop transfer function of a unity feedback system is	6M
		given by $G(s) = \frac{1}{S(1+S)(1+2S)}$. Determine Gain Margin & Phase Margin.	
Q.7		A system is given by $G(s) H(s) = \frac{(4S+1)}{S^2(S+1)(2S+1)}$ Sketch the nyquist plot and determine the stability of the system.	12M
Q.8		Draw the Nyquist plot for the system whose open loop transfer function is,	12M
Q.0			12111
		$G(s)H(s) = \frac{K}{S(S+2)(S+10)}$. Determine the range of K for which closed loop system is stable.	
Q.9		Obtain the transfer function of Lead Compensator, draw pole-zero plot and write the	12M
		procedure for design of Lead Compensator using Bode plot.	
Q.10		Obtain the transfer function of Lag Compensator, draw pole-zero plot and write the procedure for design of Lag Compensator using Bode plot.	12M

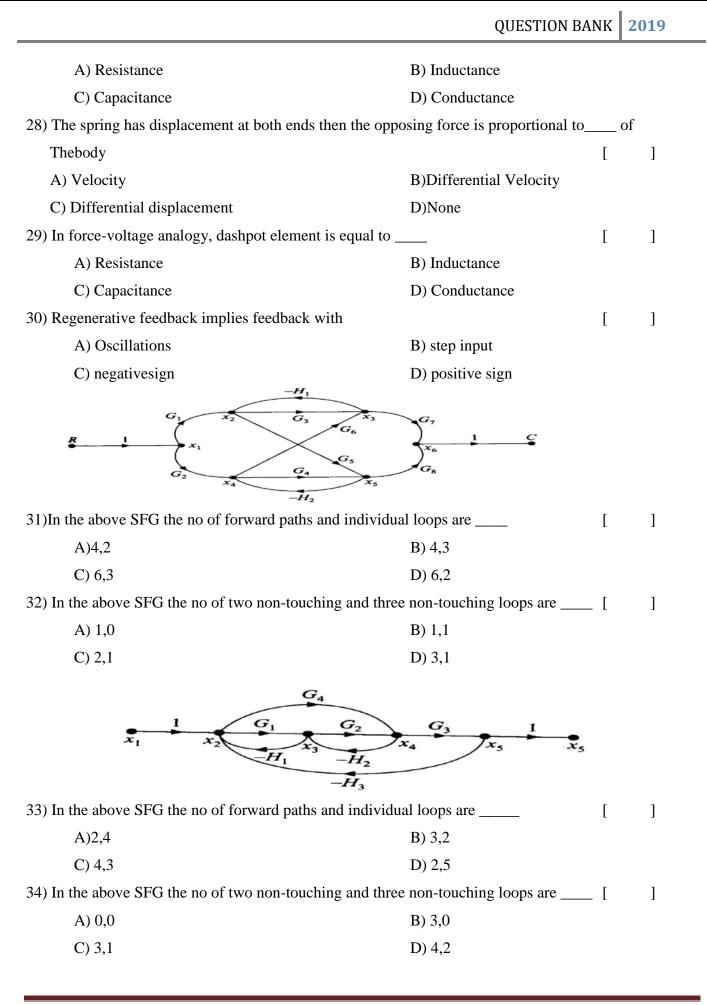
UNIT-V

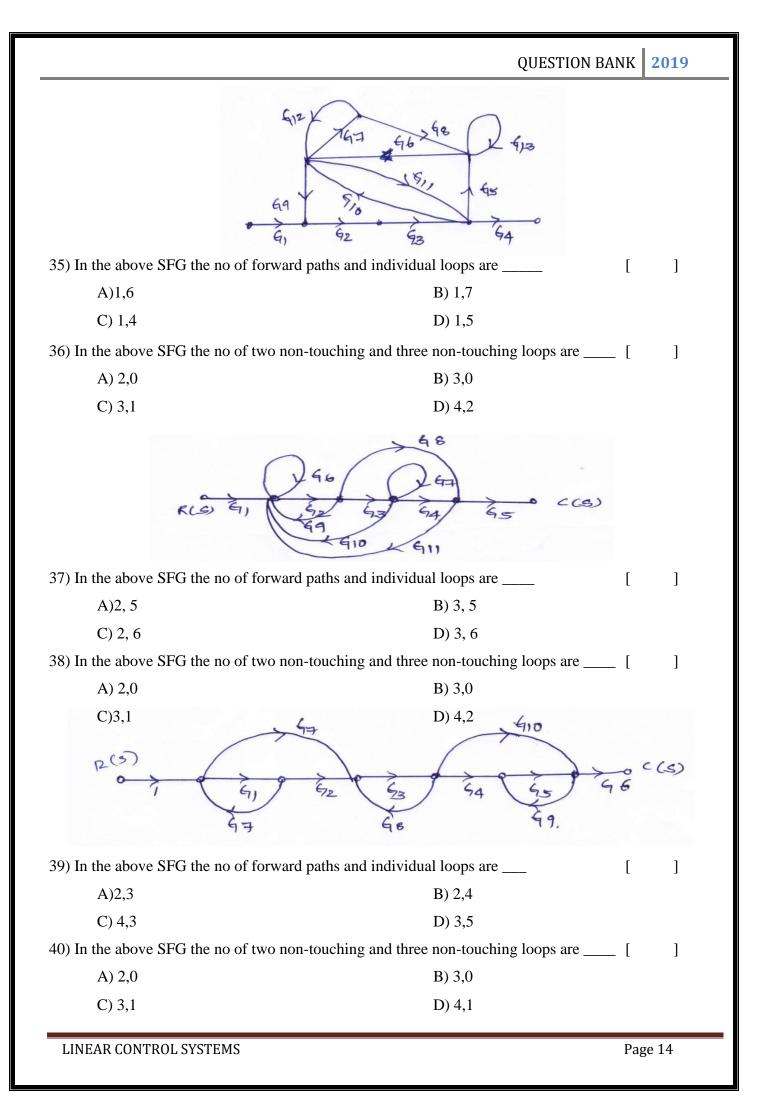
STATE SPACE ANALYSIS OF CONTINUOUS SYSTEMS

Q.1		Determine the Solution for Homogeneous and Non homogeneous State equations	12M
Q.2		For the state equation: $\dot{X} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbf{U}$ with the unit step input and the initial	12M
		conditions are $\mathbf{X}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Find the following (a) State transition matrix	
		(b) Solution of the state equation.	
Q.3		A system is characterized by the following state space equations:	
		$\dot{X}_1 = -3 x_1 + x_2; \dot{X}_2 = -2 x_1 + u; Y = x_1$	
		(a) Find the transfer function of the system and Stability of the system.	
		(b) Compute the STM	6M
~ .			6M
Q.4	a.	State the properties of State Transition Matrix.	6M
	b.	Diagonalize the following system matrix A = $\begin{pmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{pmatrix}$	6M
Q.5	a.	Obtain state variable representation of an armature controlled D.C. Motor.	6M
	b.	A state model of a system is given as:	6M
		$ \overset{\bullet}{X} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} X + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U \text{ and } Y = (1 \ 0 \ 0) X $	
		Determine: (i) The Eigen Values. (ii) The State Transition Matrix.	
Q.6	a.	Derive the expression for the transfer function and poles of the system from the state	6M
		model. $\overset{\bullet}{X} = Ax + Bu \text{ and } y = Cx + Du$	
		(4 1 -2)	6M
	b.	Diagonalize the following system matrix A = $\begin{pmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$	
Q.7		Obtain a state model for the system whose Transfer function is given by	12M
		$\frac{Y(s)}{U(s)} = \frac{(7S^2 + 12S + 8)}{(S^3 + 6S^2 + 11S + 9)}$	
Q.8	a.	State the properties of STM.	4M


QUESTION BANK 2019 8M b. For the state equation: $\dot{X} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix} U$ when, $X(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Find the solution of the state equation for the unit step input. 6M Find the state model of the differential equation is y + 2y + 3y + 4y = ua. Diagonalize the following system matrix A = $\begin{pmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{pmatrix}$ 6M b. Q.10 Define state, state variable, state equation. 6M a. Derive the expression for the transfer function from the state model. 6M b.

 $\overset{\bullet}{X} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ and $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$


Q.9


Prepared by: K.Mani & C.R. Hemavathi

	QUESTION B	ANK	2019
	<u>UNIT –I</u>		
CONT	ROL SYSTEMS CONCEPTS		
1) In controlsystems the controlsystems	rol action is dependent on the desired output	[]
A) Open loop	B) Closed loop		
C) Both (A) & (B)	D) None		
2) The Transfer function is the ratioof		[]
A) L[O/P] to L[I/P]	B) L[I/P] to L[O/P] with Zero initial cond	itions	
C) L[I/P] to L[O/P]	D) L[O/P] to L[I/P] with Zero initial cond	itions	
3) For Impulse input, the output respons	e $C(s)$ is equal to.	[]
A) R(s)	B) E(s)		
C) G(s)	D) B(s)		
4) The mass will offer an opposing force	e whichis proportional of thebody	[]
A) Displacement	B) Velocity		
C) Acceleration	D) None		
5) The Dash-pot has displacement at bo	th ends then the opposing force is proportional	to []
ofthebody			
A) Velocity	B)Differential Velocity		
C) Differential displacement	D) None		
6) Block diagrams can be used used to r	epresent	[]
A) Linear systems	B)Non-Linear systems		
C) Both (A) & (B)	D) None		
7) Three blocks with gains 2,-5and10 ar	e connected in parallel. The total gain is	[]
A) -100	B) -07		
C) 100	D) 07		
8) converts the angular pos	ition of the shaft into electrical signal	[]
A) DCServomotorC) Tacho generator	B) AC ServomotorD) Synchro		
9) The C.E of an armature controlled dc	servomotor is order equation	[]
A) First	B) Second		
C) Third	D) Zero		
r i	2 3 4 1 $c-1$ -1 -1		
LINEAR CONTROL SYSTEMS		Pag	ge 10

	QUESTION	BANK	2019
16) The dash-pot will offer an opposing force	which is proportional of the body	[]
A) Velocity	B) Differential Velocity		
C) Differential displacement	D) None		
17) The viscous friction co-efficient, in force	-voltage analogy, is analogous to	[]
A) Charge	B) resistance		
C) reciprocal of inductance	D) reciprocal of conducta	nce	
18) In force-voltage analogy, velocity is analog	ogous to	[]
A) Current	B) charge		
C) inductance	D) capacitance		
19) AC servomotor differs with normal induc	tion motor in	[]
A) Small X/R ratio	B) large X/R ratio		
C) linear speed-torque	D) both A) and C)		
20) A.C. servomotor is basically a	motor	[]
A) Universal	B) single phase induction		
C) two phase induction	D) three phase induction		
21) Synchro is basically a		[]
A) 2-phase IM	B) 3-phase IM		
C) 3-phase alternator	D) Transformer		
22) For a second order undamped system, the	poles are	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
23) AC servomotor differs with normal induc	tion motor in	[]
A) Small X/R ratio	B) large X/R ratio		
C) linear speed-torque	D) both (A) and (C)		
24) In force-current analogy, Mass element i	s equal to	[]
A) Resistance	B) Inductance		
C) Capacitance	D) Conductance		
25) The viscous friction co-efficient, in force-	-voltage analogy, is analogous to	[]
A) Charge	B) resistance		
C) reciprocal of inductance	D) reciprocal of conducta	nce	
26) In force-voltage analogy, displacement is	analogous to	[]
A) Current	B) charge		
C) inductance	D) capacitance		

	QUESTION	BANK	2019
UNI	T-II		
TIME RESPON	ISE ANALYSIS		
1) For Type-1 system the steady state error due to ste	ep input is equal to	[]
A) Infinity	B) Zero		
C)One	D) Constant		
2) A system has the following T.FG(s) = $\frac{200(S+5)(S)}{S^4(S+10)(S^2-S)}$	S+50) +3S+10)		
The order and type of the system are respectivel	у	[]
A) 4& 7	B) 4& 9		
C) 7& 4`	D) 9& 4		
3) Which of the following systems is generally prefe	erred	[]
A) Undamped	B) Under damped		
C) Critically damped	D) Over damped		
4) The damping frequency of oscillation is given by		[]
A) $\mathbf{W}_{\mathbf{d}} = \mathbf{W}_{\mathbf{r}} \sqrt{1 - \xi^2}$	B) $W_d = W_r \sqrt{1 + \xi^2}$		
$C)W_d = W_n \sqrt{1-\xi^2}$	D) $W_d = W_n \sqrt{1 + \xi^2}$		
5) For a second order critically damped system, the p	poles are	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
6) The solution of the differential equation $x^2+2x+2=$	=0 is	[]
A) Oscillatory	B) over damped		
C) under damped	D) critically damped		
7) Given a unity feedback system with G(s)=K/s(s+	4), the value of K for damping ra	atio of 0	.5 is
A)1	B)4	[]
C)16	D)64		
8) Due to the derivative control, the rise time is		[]
A)Reduced	B) increased		
C) not effected	D) zero		
9) The effect of addition of pole at origin, increases	the system	[]
A) Order	B)Type		
C) Order and type	D) none		
10) The type 2 system hasat the origin.		[]
A) No net pole	B) net pole		
C) simple pole	D) two poles		
LINEAR CONTROL SYSTEMS		Pag	je 15

	QUESTION BA	NK	2019
11) The position and velocity error constants of a type	e-2 system are	[]
A) Constant, constant	B) constant, infinity		
C) zero, constant	D) infinity, infinity		
12) Velocity error constant of a system is measured w	hen the input to the system is unit	[]
A) Parabolic	B) ramp		
C) impulse	D) step		
13)In case of type-1 system steady state error for para	bolic input is	[]
A) Unity	B) infinity		
C) zero	D)10		
14) For a second order over damped system, the poles	sare	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
15) Position error constant of a system is measured wi	hen the input tothesystem is unit	[]
A) Parabolic	B) ramp		
C) impulse	D) step		
16) For Type-1 system the steady state error due to ste	ep input is equal to	[]
A) Infinity	B) Zero		
C)One	D) Constant		
17) The positional error of the open loop transfer func	etion $G(s) = 10/((s+2)(s+3))$ with us	nity	
feedback system.		[]
A) 0.075	B) 1		
C) 0.375	D) 0.2		
18) The value of ξ of 0.6 in the step input of a 2 nd order	system results in max overshoot of	[]
A)10	B) 8.54		
C) 9.44	D) 7.55		
19) Order of the given open loop transfer function G(s	S) = $\frac{K(s+2)}{s^2(s^2+2s+1)}$	[]
A) Zero	B) one		
C) two	D) four		
20) Consider a feedback control system with loop tran	nsfer function	[]
$G(s) = \frac{K(1+0.5s)}{s(1+s)(1+2s)}$ The type of the closed loop	system is		
A) zero	B) one		
LINEAR CONTROL SYSTEMS		Page	16

	QUESTION BA	NK	2019
C) two	D) three	GAT	TE 1998
21) The settling time of 2 nd order system is	times the time constant of the system.	[]
A) One	B) Two		
C) Four	D) Six		
22) For a second order under damped system,	the poles are	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
23) The Laplace transform of impulse function	n is	[]
A) zero	B) one		
C) infinity	D) none		
24) For the unity feedback control with $G(s) =$	$\frac{4}{S^2+8S+4}$, the damping ratio is	[]
A)2	B)1		
C) 0.707	D) 0.5		
25) In time domain analysis response of the sy	vstem varies w.r.t	[]
A) Time	B) frequency		
C) both time and frequency	D) constant		
26) Undamped natural frequency for $S^2+2S+1=$	= 0 is	[]
A) Zero	B) one		
C) two	D) infinity		
27) Order of the given open loop transfer func	tion $G(s) = K/(S+1)$	[]
A) Zero	B) one		
C) two	D) three		
28) The effect of addition of pole atorigin, inc	reases the system	[]
A)Order	B)Type		
C) Order and type	D) none		
29) The type 1 system hasat the	origin.	[]
A) No net pole	B) net pole		
C) simple pole	D) two poles		
30) Position error constant of a system is meas	sured when the input to the system is unit _	[]
A) Parabolic	B) ramp		
C) impulse	D) step		
31) The steady state error due to a ramp input		[]
A)0	B) infinity		
C)4	D)constant		
LINEAR CONTROL SYSTEMS		Page	17

			QUESTION BANK 20	019
32) For a 2^{nd} order system	n with CLTF T(s) =	$1/(S^2+0.1S+1)$, the settling	time for 5% band is []
A)6		B)2		
C)3		D)4		
33) The steady state error	of a stable 'type 0	' unity feedback system for a	unitstep function is []
A)0		B) 1/1+ <i>K</i> _P		
C)∞		D) 1/ <i>K</i> _P	GATE 1990	
34) A unity-feedback con	ntrol system has the	open-loop transfer functio	on G(s)= $\frac{4(1+2s)}{s^2(s+2)}$ []
if the input to the sys	tem is a unity ramp	, the steady-state error wil	l be	
A) 0		B) 0.5		
C) 2		D) Infinity	GATE 1991	
35) Type of the system give	$\operatorname{ven} \mathbf{G}(\mathbf{s}) = 2/\mathbf{S}^2 (2 + \mathbf{S})$)is equal to	[]
A) Zero		B) one		
C) two		D) three		
36) If the characteristic e	quation of a closed-	loop system is $s^2+2s+2=0$, then the system is[]
A) Overdamped		B) Critical	ly damped	
C) Under damped	l	D) undamp	GATE 1998	
37) Consider a system wi	th the T.F $G(s) = \frac{1}{6}$	$\frac{(s+6)}{(Ks^2+s+6)}$. Its $\xi = 0.5$ the	n the value of K is []
A) 2/6		B) 3		
C) 1/6		D) 6	GATE 2002	
38) For a 2nd order system	m, damping ratio (§	(5) is $0 < \xi < 1$, then the roots	of the C.E are []
A) real but not eq	ual	B) real and	l equal	
C) complex conju	gates	D) imagina	ary GATE 1995	
39) A casual system havi	ng the transfer func	tion G(s) = $\frac{1}{(s+2)}$ is exclusion	ited with $10u(t)$.	
The time at which the	e output reaches 99	% of its steady state value	is `[]
A) 2.7 sec		B) 2.5 sec		
C) 2.3 sec		D) 2.1 sec	GATE 2004	
40) Order of the given op	en loop transfer fui	function G(s) = $\frac{(s+2)}{s(s^2+2s+1)}$	[]
A) Zero	B) one	C) two	D) three	
LINEAR CONTROL SYST	EMS		Page 1	.8

UN	<u>IT –III</u>		
STABILITY ANALYSIS	S IN CONTROL SYSTEMS		
1) When a system is excited by an unbounded inpu	t and produces an unbounded output	,	
Then the system is		[]
A) Stable	B) unstable		
C) conditionally stable	D) nothing can said about s	tability	
2) If there is a root locus on real axis between pole	and zero then there exist	[]
A)Break-in point	B) breakaway point		
C)Both	D) none		
3) The OLTF of a unity feedback control system is	$G(s)=K/(S+2)^2$ the CLTF will have		
poles at		[]
A) -2,-2	B) -2,-1		
C)-2 + j, -2 – j	D) -2, 2		
4) The necessary condition of the Routh Hurwitz st	tability is	[]
A) Elements in the first column of the routh	array is positive		
B) coefficients should be zero			
C) both A and B			
D) None			
5) The open loop transfer function of a unity feedb	ack control system is given by		
$G(s) = \frac{5(S+1)}{S^2(S+2)}$. The stability characteristics of th	ne open loop configuration.	[]
A) stable	B) unstable		
C) conditionally stable	D) marginally stable		
6) If the OLTF of an unity feedback system is the r	ation of numerator polynomial of de	gree 'm	'
And a denominator polynomial of degree 'n' then the	ne integer n-m represent the number of	[]
A) Break away points	B) Unstablepoles		
C) Root locus branches	D) Asymptotes		
7) The open loop transfer function of the system is	given by G(s)= $\frac{K}{S(S+2)(S+4)}$.		
Themaximum Value of K for which the unity fe	edback system will be stable.	[]
A) 16	B) 32		
C) 48	D)64		
8) Adding pole results gain margin		[]
A) decrease	B) increase		
	D) none		

	QUESTION BA	4NK	2019
9) The rootlocus is a		[]
A) time domain approach	B) frequency domain appro	ach	
C) combination of both	D) None		
10) The OLTF of a unity feedback system is given as G($\mathbf{S} = \frac{K(S+2)}{S(S^2+2S+2)}.$		
The angles of root locus Asymptotes are		[]
A)+90 [°] ,-90 [°]	B)+ $60^{0,-}60^{0}$		
C) $+120^{\circ}$, -120°	D) $+360^{\circ}, -360^{\circ}$		
11) The no.of. roots of the equation $2S^4 + S^3 + 3S^2 + 5S + 7 = 0$ t	hat lies in the right half of S-plane	; []
A) 0	B) 1		
C) 2	D) 3		
12) Loop TF is K(S+1)(S+2))/((S+4)(S+6) for K=0 clos	ed loop poles are at.	[]
A) -1,-2	B) -4,-6		
C) ∞, ∞	D) 0,0		
13) The number of changes in first column of Routh arra	y represents	[]
A) Stability	B) unstability		
C) Number of roots lie on right sideof s-plane	D) both b and c		
14) The stability of the system can be increased by addin	1g	[]
A) Pole	B) zero		
C) both	D) none		
15) The root locus of system with $G(s) H(s)=K(S+1)/(S^2 (S+1))$	5+3.6) has how many asympotote	s []
A) one point	B) two points		
C) +j , -j	D) three points		
16) The roots of the characteristic equation lies on the lea	ft of S-plane, then system is	[]
A) stable	B) unstable		
C) conditionally stable	D) marginally stable		
17) The characteristic equation of a system is given by S	⁴ + 8 S ³ + 12 S ² + 8S + K = 0 .for the	e syster	m
To remain stable, the value of gain K should be		[]
A) 0	B) 0 < K < 11		
C) K > 11	D) Positive		

	QUESTION	BANK	2019
18) The open loop transfer function of a unity feedb	ack control system is given by	[]
$G(s)=5(S+1)/S^2$ (S+2). The stability characterist	tics of the closedloopconfiguration	1.	
A) Stable	B) unstable		
C) conditionally stable	D) marginally stable		
19) The characteristic equation of a feed back control	ol system is $2S^4 + S^3 + 3S^2 + 5S + 10$)=0.	
The Numberof rootsin the right half of Splane and	re	[]
A) 0	B) 1		
C) 2	D) 3		
20) The root locus is		[]
A) an algebraic method	B) a graphical method		
C) combination of both	D) None		
21) Break points can be		[]
A) only real	B) only complex		
C) real or complex	D) None		
22) Asymptotes can intersect		[]
A) only on the negativerealaxis	B) only on the positive re	al axis	
C) anywhere on the real axis	D) imaginary axis		
23) The open loop transfer function of a system is G	G(s)H(s)=k/s(s+1)(s+2). Its centroid	d is at s=	
A) -2.5	B) -4	[]
C) -4.5	D) -1		
24) If the roots of characteristic equation lie on image	ginary axis the system is	[]
A) Stable	B) unstable		
C) Conditionally stable	D) marginally stable		
25) If first entry in any row of Routh array is negative	ve the system is	[]
A) Stable	B) unstable		
C) Conditionally stable	D) marginally stable		
26) The number of changes in first column of Routh	array represents	[]
A) Stability	B) unstability		
C) Number of roots lie on right sideof s-plan	D) both B and C		
27) By adding the pole in the transfer function, The	rootlocus shift towards	[]
A) Right half of S plane	B) left half of S plane		
LINEAR CONTROL SYSTEMS		Page	0.1

QUESTION BA	NK	2019
n is	[]
table		
ning can said about sta	ability	У
2	[]
bles and 2 zeros		
oles and 2 zeros		
ts, then the system is	[]
table		
ginally stable		
	[]
б		
e exist	[]
akaway point		
e		
the s – plane is	[]
•		
ee	GA '	TE 199
plane poles in its		
	[]
	GA	TE 200
$G(s)H(s) = \frac{(1-s)}{(s+1)(s+2)}$	[]
t ⁰		
	GA	TE 200
ntrol system is given	by	
by	[]
	GA '	TE 200
1	эу	

	QUESTION	BANK	2019
37) The gain margin for the system with or	ben – loop transfer function $G(s)H(s) = 2(1$	+s)/s ² is []
$(A) \infty$	(B) 0		
(C) 1	(D) —∞	GAT	ГЕ 200 ⁴
38) If the closed – loop transfer function of	a control system is given as $T(s) = \frac{(s-1)^2}{(s+2)^2}$	5) [5+3], then	it is
		[]
(A) an unstable system	(B) an uncontrollable system		
(C) a minimum phase system	(D) a non – minimum phase sys	tem GAT	ГЕ 200
39) Consider a characteristic equation give	n by $3s^3 + 5s^2 + 6s + K + 10 = 0$. The cor	ndition for	
stability is		[]
(A) $K > 5$	(B) - 10 < K		
(C) $K > -4$	(D) - 10 < K < -4	GAT	ГЕ 198
40) An electromechanical closed-loop cont	× /		
· · · · · ·	is the forward gain of the system. The co	-	
loop stability is:	is the forward gain of the system. The con	[]
A) $K = 0.528$	B)2	L	1
C) 3	D) none	GAT	ГЕ 199
0,0	UNIT-IV	GIL	
FREQUEN	CY RESPONSE ANALYSIS		
1) A system is unstable when		[]
A) $\omega_{gc} = \omega_{pc}$	B) $\omega_{gc} < \omega_{pc}$		
$C)\omega_{gc} > \omega_{pc}$	D) $\omega_{gc} = \omega_{pc} = 0$		
2) ξ = 0, Mr is given by		[]
A)Infinity	D)0		
A)Infinity	B)0		
C)1	B)0 D)4		
C)1	, ,	[]
C)1	, ,]]
C)1 3)The slope of(1+j ω)is	D)4	[]
C)1 3)The slope of(1+j ω)is A) +20db C)-40db	D)4 B) +40db D)-20db		
C)1 3)The slope of(1+j ω)is A) +20db C)-40db	D)4 B) +40db D)-20db		
 C)1 3)The slope of(1+jω)is A) +20db C)-40db 4) A unity feedback system G(s)=(10(s+2)) 	D)4 B) +40db D)-20db	frequency	ý
 C)1 3)The slope of(1+jω)is A) +20db C)-40db 4) A unity feedback system G(s)=(10(s+2)) asymptote is 	D)4 B) +40db D)-20db D/($s^2 (s+1)(s^2+2s+2)$).The slope of the low	frequency	ý
C)1 3)The slope of(1+jω)is A) +20db C)-40db 4) A unity feedback system G(s)=(10(s+2)) asymptote is A) -20dB/dec	D)4 B) +40db D)-20db D/($s^2 (s+1)(s^2+2s+2)$).The slope of the low B) -40dB/dec D) 80dB/dec	frequency	ý

	QUESTION BA	ANK	2019
C)W _d =W _n ν1-ξ ²	D) W _d = W _n √1 +ξ ²		
6) The effect of addition of pole increases the system		[]
A) Order	B)Type		
C) Order and type	D) none		
7) At the gain crossover frequency		[]
A) G(jw)H(jw)=0dB	B) $G(jw)H(jw)=1 dB$		
C) $G(jw)H(jw) = -20 \text{ dB}$	D) G(jw)H(jw)=20dB		
8) The reciprocal of the magnitude of OLTF at phase cr	ross over frequency is called	[]
A) Phase margin	B)gain margin		
C) Phase plot	D) Magnitude plot		
9) Angle of G(jw) H(jw) =0at		[]
A) gain cross over frequency	B) Phase cross over frequer	ncy	
C) Both	D) none		
10) From the bode plots it is observed that the gain cross	ss over frequency is greater than		
phase cross overfrequency. The system is called		[]
A) Stable	B)Marginally stable	-	-
C) Conditionally stable	D) Unstable		
11) From the bode plots it is observed that the gain cross			
phase crossover frequency. The system is called		[]
A) Stable	B)Marginally stable		
C) Conditionally stable	D) Unstable		
12) For the pole factor $\frac{1}{(S+5)}$ the cornerfrequency is		[]
A)1/5	B)5		
C)-1/5	D)-5		
13) At the phase crossover frequency $w=10 \text{ rad} / \text{sec}$, G(jw))H(jw)=15 Db .It's gain margin is	[]
A) 15 dB	B) 0dB		
C)-15dB	D) cannot be predicted		
14) The frequency at which the -3db magnitude is zero	is called	[]
A) Cut-offrate	B) Cut-offResonant		
C) Cut-off frequency	D) Bandwidth		
15)The slope of $(1+j\omega)$ is		[]
13) The slope of (1, jw) is			

	QUESTION BA	NK	2019
C)-40db	D)-20db		
16) Magnitude of $G(jw) H(jw) = 1$ at		[]
A) gain cross over frequency	B) Phase cross over frequen	су	
C) Both	D) none		
17)1 DB=		[]
A) 20log _e G(jω) C) 20log ₁₀ G(j ω)	B) G(j ω) D) -20log ₁₀ G(j ω)		
18) Order of the given open loop transfer function	$G(s) = K(S+2) / S^2 (S^2+2S+1)$]	[]
A) Zero	B) one		
C) two	D) four		
19) Type of the system given in problem no. 18 is	equal to	[]
A) Zero	B) one		
C) two	D) four		
20) The settling time of II nd order system is t	times the time constant of the system.	[]
A) One C) Four	B)Two D) Six		
21) For a second order under damped system, the	poles are	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
22) A system is unstable when	-	[]
A)wgc=wpc	B)wgc <wpc< td=""><td></td><td></td></wpc<>		
C)wgc>wpc	D)@gc=@pc=0		
23) Gain cross over frequency is the one at which	G(jw)H(jw)is	[]
A) equal to 1	B) equal to-1		
C) >1	D) <-1		
24)The slope of $1/(1+j\omega)$ is		[]
A) +20db	B) +40db		
C) -40db	D) -20db		
25) The phase crossover frequency is the frequency	y at which the phase of $G(j\omega)$ is	[]
A) 0°	B)90°		
C) 270°	D) 180°		
26) The sinusoidal transfer function is obtained by	replacing 's' by	[]
A) jω	$\frac{B}{B}(j\omega)^2$		
C) $(-j\omega)^2$	D)-jω		

	QUESTION B	ANK 2	2019
27) The effect of addition of pole increases the system		[]
A) Order	B)Type		
C) Order and type	D) none		
28) A second order overall transfer functionis given by 4/ A) 2	(S^2+2S+4) . Its resonant freq B) 1.414	uency is []
C) 1.732	D) 3		
29) The system with the open loop transfer function $G(s)$	$H(s) = 1/s(s^2+s+1)$ has a		
gain margin of		[]
A) - 6 dB	B) 0Db		
C) 3.5Db	D) 6 Db		
30) A system has fourteen poles and two zeros. Its high fr	equency asymptote in its mag	gnitude p	plot
having a slope of:		[]
(A) - 40 dB/decade	(B) – 240 dB/decade		
(C) - 280 dB/decade	(D)-320dB/decade		
31) The polar plot $G(s)=10/(S+1)^3$ of intercepts real axis a	t $\omega = \omega_0$. Then, the real partan	d ω ₀ are	e
respectivelygiven by:		[]
(A) - 2.5, 1	(B)–5,0.5		
(C)–5,1	(D) – 5, 2		
32) From the Nicholas chart one can determine the follow	ing quantities pertaining to a	closed 1	oop
system:		[]
(A) Magnitude and phase	(B) Band width		
(C) Only magnitude 33) The open-loop transfer function of a feedback control	(D) Only phase system is $G(s)=1/(S+1)^3$. The system is $G(s)=1/(S+1)^3$ is the system of the syst	GAT	E 1989 margin
of the system is		[]
(A) 2	(B)4		
(C) 8	(D) 16	GAT	E 1991
34) Non-minimum phase transfer function is defined as th	e transfer function	[]
(A) which has zero in the right-half s-plane(B) which has zero only in the left-half s-plane(C) which has poles in the right-half s-plane(D) which has poles in the left-half s-plane			
³⁵⁾ The Nyquist plot of loop transfer function $G(s)H(s)$ of	a closed loop control system	passes	
through the point $(-1, j, 0)$ in the $G(s)H(s)$ plane. The			system is

	QUESTION E	BANK	2019
A) 0 ⁰	B) 45 ⁰	[]
C) 90 ⁰	D) 180 ⁰	GAT	ГЕ: 2004
36) The Nyquist plot of G(S) H(S) for a closed le	oop control system, passed through (-1	,j 0)	
Point in GH plane. The gain margin of the s	system in dB is equal to	[]
(A) infinite	(B) greater than zero		
(C) less than zero	(D) zero	GAT	Е 2006
37) In the Bode – plot of a unity feedback contr	ol system, the value of phase of $G(j\omega)$	at the ga	in cross
over frequency is -125° . The phase margin of	of the system is	[]
$(A) - 125^{0}$	$(B) - 55^{0}$		
(C) 55 ⁰	(D) 125 ⁰	GAT	ГЕ 1998
38) In a Bode magnitude plot, which one of the	following slopes would be exhibited a	thigh fre	equency
by 4th order all-pole system?		[]
A) – 80 dB/decade	B) – 40 dB/decade		
C) + 40 dB/decade	D) + 80 dB/decade	GAT	ГЕ: 2014
39) For the equation, $s^3 - 4s^2 + s + 6 = 0$ the number of the second	ber of roots in the left half ofs -plane w	ill be[]
A) Zero	B) One		
C) Two	D) Three	GAT	ГЕ: 2004
40) The gain margin of a unity feed back control	bl system with the OLTF $G(s)=s+1/s^2$	[]
A) 0	B) 1/√2		
C) √ 2	D) 3	GAT	ГЕ: 2005
	<u>UNIT-V</u>		
STATE SPACE ANALYS	SIS OF CONTINUOUS SYSTEMS		
1. $\emptyset(s)$ is called		[]

			_		_
	A) State	B)conditionofstate			
3) The	smallest set of variable of a state is called		[]	
	C) model matrix	D) input matrix			
	A) system matrix	B) state transition matrix			
2. Ø(t)is called		[]	
	C) Resolvent Matrix	D) Resolution Matrix			
	A) system matrix	B) state transition matrix			

	QUESTION BA	ANK	2019
C) Eigen values	D) state variables		
4) Solution of the state equation with conceding the input	is called	[]
A) Homogenous solution	B) non homogeneous soluti	on	
C) both	D) none		
5) $X(t) = AX(t) + BU(t)$ is called		[]
A) state model	B)stateequation		
C) output equation	D)all		
6) Given a system represented by equations $X'(t) = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -3 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t)$ and		
Y = 1 0 X(t) The equivalent transfer function represe	entation G(s) of the system is	[]
A) $G(s)=1/s^2+5s+2$	B) $G(s)=1/s^2+3s+2$		
C) $G(s)=3/s^2+5s+2$	D)none		
7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\2 \end{bmatrix} X(t) + \begin{bmatrix} 1\\1 \end{bmatrix} U(t)$		
The state transition matrix of the system is		[]
A) e^{2t} I	B) e^{-2t} I		
C) I	D) none		
8) Which among the following is a unique model of a syst	em?	[]
 A) Transfer function C) Both a and b 9) According to the property of state transition method, e⁰ 	B) State variableD) None of the aboveis equal to	ſ	1
A) I	B) A	L	1
C) e^{-At}	D) $-e^{At}$		
10) Which mechanism in control engineering impliesan at	bility to measure the state by t	aking	
measurements at output?	5	[]
A) Controllability	B) Observability	-	-
C) Differentiability	D) Adaptability		
11) State model representation is possible using	· · · ·	[]
A) Physical variables	B) Phase variables		
C) Canonical state variables	D) All of the above		
12)Which among the following constitute the state model	of a system in addition to stat	e equa	ations?
A) Input equations	B) Output equations		
C) State trajectory	D) State vector	[]
13)Which among the following plays a crucial role in dete	rmining the state of dynamic	syster	n?
A) State variables	B) State vector		

	QUESTION BA	NK	2019
C) State space	D) State scalar	[]
14) Which among the following are the interconnec	ted units of state diagram representa	tion?	
A) Scalars	B) Adders		
C) Integrators	D) All of the above	[]
15) State space analysis is applicable even if the init	tial conditions are	[]
A) Zero	B) Non-zero		
C) Equal	D) Not equal		
16) Conventional control theory is applicable to	systems	[]
A) SISO	B) MIMO		
C) Time varying	D) Non-linear		
17) The number of elements in the state vector is re-	fered to of the system	[]
A) Order	B) Characteristic Equation		
C) Type	D) all		
18) In $X(t) = AX(t) + BU(t)$ A is known as		[]
A) System Matrix	B) InputMatrix		
C) Output Matrix	D) Transmission Matrix		
19) In $X(t) = AX(t) + BU(t)\mathbf{B}$ isknown as		[]
A) System Matrix	B) InputMatrix		
C) Output Matrix	D) Transmission Matrix		
20) In $Y(t) = CX(t) + DU(t)C$ isknown as		[]
A) System Matrix	B) InputMatrix		
C) Output Matrix	D) Transmission Matrix		
21) $InY(t) = CX(t) + DU(t)D$ isknown as		[]
A) System Matrix	B) InputMatrix		
C) Output Matrix	D) Transmission Matrix		
22)The state equations and the output equations tog	ether are called	[]
A) state model	B) stateequation		
C) output equation	D)Dynamic Equation		
23) The characteristic equation of a state model is g	iven by	[]
A) $ \lambda I - A = 0$	B) $ \lambda I + A = 0$		
C) λI-A =1	D) 0		
24) The roots of the characteristic equation are refer	rred to asof the matrix A.	[]
A) state model	B) eigen value		
LINEAR CONTROL SYSTEMS		Pag	e 29

	QUESTION BANK	2019
C) output equation	D)all	
25) The process of obtaining the state of	liagram of a system from its transfer function is []
A) Diagonalization	B) Phasevariable	
C) Decomposition	D) all	
26) The matrix formed by placing the e	eigen vectors together in column-wise is called []
A) System Matrix	B) Modal Matrix	
C) Transmission Matrix	D) all	
27) Which theorm states that every squ	are matrix A satisfies its own characteristic equation.[]
A) Cayley-Hamilton	B) Kalman's	
C) Gilberts	D) all	
28) The concepts of controllability &	bservability were introduced by []
A) Cayley-Hamilton	B)Kalman's	
C) Gilberts	D) all	
29) Controllability & observability can a	also be determined by method. []
A) Cayley-Hamilton	B) Kalman's	
C) Gilberts	D) all	
30) The transfer function of a s/m can	be obtained from its state model by using the []
formula C(s)/R(s)=		
A) C(SI-A) ⁻¹ B+D	B) C(SI-A)B+D	
C) C(SI-A) ⁻¹ 31) State model is said to be stable if a	D)all llits eigen values have []
A) positivereal parts	B) Negative real parts	
C) Both	D) None	
32) A state variable system $X(t) =$	$\begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} X(t) + \frac{1}{0} U(t) \text{ with the initial condition}$	
$X(0) = [-1 \ 3]^{T}$ and the unit step inp	out u(t) has the state transition matrix []
	$(B)\begin{bmatrix}1 & 1/3(e-t-e-3t)\\0 & e-3t\end{bmatrix}$	
C) $\begin{bmatrix} 1 & 1/3(e^3 - t - e - 3t] \\ 0 & e - 3t \end{bmatrix}$	$(D)\begin{bmatrix} 1 & 1/3(1-e-3t)\\ 0 & e-t \end{bmatrix} \qquad \text{GATE}$	2005
33) The number of ways in which STM	I can be computed is []
A) 2 B) 3	C) 5 D) 6	
34) The state variable description of a	linear autonomous system is, $X^{\circ} = AX$ where X is the t	WO
dimensional state vector and $A = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$. The roots of the characteristic equation are []
A) -2 and +2	B) $-j2$ and $+j2$	
LINEAR CONTROL SYSTEMS	Pag	ge 30

	QUESTIC	ON BANK	2019
C) -2 and -2	D) +2 and +2	GAT	E 2004
35) The state transition matrix for the system $X^{\circ} = AX$ with	n initial state $X(0)$ is	[]
A) $(sI - A)^{-1}$	$\mathbf{B}) \ e^{At} \mathbf{X}(0)$		
C) $L^{-1}[(sI - A)^{-1}]$	D) $L^{-1}[(sI - A)^{-1}X(0)]$	GATE	E 2002
36) For the system, $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ which o	f the following statemer	nts is true []
A) The system is controllable but unstable			
B) The system is uncontrollable and unstable			
C) The system is controllable and stable			
D) The system is uncontrollable and stable		GA	TE 2002
37) The transfer function of the system described by d^2y/dt	$^{2}+dy/dt=du/dt+2u$		
with <i>u</i> asinput and <i>y</i> asoutputis]]
A) $s + 2/s^2 + s$	B) $s+1/s^2+s$		
C) $2/s^2 + s$	D)2 s/s^2+s		
38) Given a system represented by equations $X^{\cdot}(t) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\4 \end{bmatrix} X(t) + \begin{bmatrix} 1\\1 \end{bmatrix} U(t)$ with	<i>u</i> as unit i	mpulse
and with zero initial state, the output y, becomes		[]
A) $2e^{2t}$	$\mathbf{B}) \ 4e^{2t}$		
C) $2e^{4t}$	D) $4e^{4t}$	GA	TE 2002
39) Given a system represented by equations $X'(t) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$	$\frac{2}{2} \bigg] X(t) + \frac{0}{1} U(t)$	[]
A) Stable and controllable	B) Stable but uncontro	ollable	
C) Unstable but controllable	D) Unstable and unco	ntrollable (GATE 2010
40) A function $y(t)$ satisfies the following differential equa	tion : $dy(t)/dt+y(t) = \delta(t)$	where $\delta(t)$) is the
delta function. Assuming zero initial condition, and de	noting the unit step func	tion by <i>u</i> (<i>t</i>),
y(t) can be of the form		[]
A) e^t	B) e^{-t}		
C) $e^t u(t)$	D) $e^{-t}u(t)$	GATE 2	2008
	Prepared by: K.Mar	<u>ni & C.R.</u>	<u>Hemavathi</u>